
Enumerations

Fundamentals of Computer Science

Outline

 Avoiding magic numbers

 Variables takes on a small set of values

 Use descriptive names instead of literal values

 Java enumerations

 Using in a switch statement

Variables from a Set of Values

 Magic numbers

 Where did the value come from?

 What does it mean?

 What if you mistype the number?

 What if you want to keep value in specific range?

int direction = 0;

...

if ((direction == 1) || (direction == 3) ||
 (direction == 5) || (direction == 7))
{ /* TBD */ }

direction = 0; // Valid???
direction = 8; // Valid???
direction = -2729; // Valid???

 Solution 1: Create final constants
 Descriptive names means everybody can read
 Bugs less likely, typo in name = compile error

 Keyword final ensures nobody can change value

final int NORTH = 0;
final int NORTHEAST = 1;
final int EAST = 2;
final int SOUTHEAST = 3;
final int SOUTH = 4;
final int SOUTHWEST = 5;
final int WEST = 6;
final int NORTHWEST = 7;

int direction = NORTH;

...

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
 (direction == SOUTHWEST) || (direction == NORTHWEST))
{ // TBD }

Variables from a Set of Values

final int NORTH = 0;
final int NORTHEAST = 1;
final int EAST = 2;
final int SOUTHEAST = 3;
final int SOUTH = 4;
final int SOUTHWEST = 5;
final int WEST = 6;
final int NORTHWEST = 7;

int direction = 0;

...

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
 (direction == SOUTHWEST) || (direction == NORTHWEST))
{/* TBD */}

direction = 0; // Valid???
direction = 8; // Valid???
direction = -2729; // Valid???

Problem 3: Not forced to
stay in range. What does it
mean to be 8 or -2729 if you
are a compass direction?

Problem 2: Not forced to use
the friendly names.

Constants not Always Ideal

Problem 1: Tedious to
type. Also easy to mess
up, e.g. setting two
constants to same value.

Enumerations

 A better solution: enumerations

 Specifies exact set of friendly names

 Compiler ensures we stay in range

 public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
 SOUTH, SOUTHWEST, WEST, NORTHWEST}
public class CompassTest
{
 public static void main(String [] args)
 {
 Compass direction = Compass.NORTH;
 if ((direction == Compass.NORTHEAST) ||
 (direction == Compass.SOUTHEAST) ||
 (direction == Compass.SOUTHWEST) ||
 (direction == Compass.NORTHWEST))
 {/* TBD */}

 direction = 0;
 }
}

Now a compile error.
Way to watch our back compiler!

Easiest to
declare
outside class.
Semicolon is
optional.

Enumeration Tricks

 Enumerations
 Actually objects with a few handy methods:

toString() Print out friendly name corresponding to value of
variable

values() Returns array of all the possible values type can take
on

public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
 SOUTH, SOUTHWEST, WEST, NORTHWEST}

...

for (Compass d : direction.values())
{
 if (checkMonster(hero, d))
 System.out.println("You see a monster to the " +
 d.toString());
}

for-each loop, goes over
all values of the
enumeration

switch Statement

Compass direction = Compass.NORTH;

switch (direction)
{
 case NORTH:
 hero.move(0, 1);
 System.out.println("Walking north");
 break;
 case SOUTH:
 hero.move(0, -1);
 System.out.println("Walking south");
 break;
 case EAST:
 hero.move(1, 0);
 System.out.println("Walking east");
 break;
 case WEST:
 hero.move(-1, 0);
 System.out.println("Walking west");
 break;
}

Note: normally you need
"Compass.", but not in switch
case since Java knows type

You can have as
many statements
as you want
between case
and break.

Summary

 Avoiding magic numbers

 Variables takes on a small set of values

 Use descriptive names instead of literal values

 Java enumerations

 Using in a switch statement

Regular Expressions

Fundamentals of Computer Science

having nothing driving regulating growing pausing bringing stepping knocking not

hing surprising leaning looking striving pacing Nothing loitering falling enchan

ting reaching overlapping receiving meaning going something something taking goi

ng being broiling thing putting lording making anything knowing paying paying be

ing paying being considering having whaling going whaling something "Whaling wha

ling being performing cajoling resulting discriminating overwhelming attending e

verlasting ignoring whaling Quitting learning reaching following whaling somethi

ng everything monopolizing having following shouldering comparing halting pausin

g tinkling stopping moving proceeding thing flying hearing sitting beating weepi

ng wailing teeth-gnashing backing Moving creaking looking swinging painting repr

esenting swinging leaning howling toasting chattering shaking everlasting making

 holding being blubbering going Entering straggling reminding painting understan

ding throwing something hovering floating painting something weltering purposing

 spring impaling glittering resembling sweeping death-harvesting horrifying whal

ing sojourning Crossing howling Projecting dark-looking goggling cheating enteri

ng examining telling tapping sharing ruminating adorning stooping working trying

 adjoining Nothing winding scalding looking nothing knowing evening rioting Star

ting offing tramping capering making sleeping making dazzling seeming sleeping s

leeping being getting going feeling saying dusting planing grinning spraining pl

aning gathering throwing yoking leaving standing looking seeing spending cherish

GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG

Outline

 Regular expressions

 Convenient notation to detect if a string is in a set

 Built-in to many modern programming languages

 Usually easier than writing custom string parsing code

 Very powerful

 But still some things it can't do:

 e.g. Recognize all bit strings with equal number of 0's and 1's

 Well-supported in Java String class:

 Test if a String matches an RE

 Split a String based on an RE

 Find-and-replace based on an RE

Pattern Matching

 Is a given string in a set of strings?

 Example from genomics:

 DNA: sequence of nucleotides: C, G, A or T

 Fragile X syndrome:

 Common cause of mental disability

 Human genome contains triplet repeats of CGG or AGG,
bracketed by GCG at the beginning and CTG at the end

 Number of repeats is variable, correlated with syndrome

Set of strings: "all strings of G, C, T, A having some occurrence of GCG followed
by any number of CGG or AGG triplets, followed by CTG"

Question: Is the following string in this set of strings?

GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG

Pattern Matching

Set of strings: "all strings of G, C, T, A having some occurrence of GCG followed
by any number of CGG or AGG triplets, followed by CTG"

Question: Is the following string in this set of strings?

GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG

Answer: Yes

 Is a given string in a set of strings?

 Example from genomics:

 DNA: sequence of nucleotides: C, G, A or T

 Fragile X syndrome:

 Common cause of mental disability

 Human genome contains triplet repeats of CGG or AGG,
bracketed by GCG at the beginning and CTG at the end

 Number of repeats is variable, correlated with syndrome

A Pattern Matching Application

 PROSITE
 Huge database of protein families and domains

 How to identify the C2H2-type zinc finger domain?

1. C

2. Between 2 and 4 amino acids

3. C

4. 3 amino acids

5. One of the following amino acids: LIVMFYWCX

6. 8 amino acids

7. H

8. Between 3 and 5 amino acids

9. H

CAASCGGPYACGGWAGYHAGWH

CAASCGGPYACGGWAGYHAGWH

Another Pattern Matching Application

 What are people saying about Keith on twitter?

 Collecting ~1% of tweets since 2010

 Currently 737 GB 1.6 TB compressed!

 Find all tweets starting with "keith is"

 How many?

 Out of 54 M "sensible" English tweets: 91

 keith is so awesome
keith is fun
keith is beautiful
keith is sweet
keith is the king of this here compound
keith is great
keith is always there when i need to laugh
keith is the bestest
keith is awesome
keith is so sweet
keith is hilarious
keith is such a kind soul and life saver
...

Even More Applications

 Test if a string matches some pattern

 Process natural language

 Scan for virus signatures

 Access information in digital libraries

 Find-and-replace in word processors

 Filter text (spam, NetNanny, ads, Carnivore, malware)

 Validate text fields (dates, email, URL, credit card)

 Parse text files

 Compile a Java program

 Crawl and index the web

 Create Java documentation from Javadoc comments

Regular Expressions

 Regular expressions (REs)
 Notation that specifies a set of strings

operation regular
expression

matches does not match

concatenation aabaab aabaab every other string

wildcard
.

.u.u.u. cumulus
jugulum

succubus
tumultuous

union
|

aa | baab aa
baab

every other string

closure / star
(0 or more)
*

ab*a aa
abbba

ab
ababa

parentheses
()

a(a|b)aab aaaab
abaab

every other string

(ab)*a a
ababababa

aa
abbba

Regular Expressions

 Regular expressions (REs)
 Notation is surprisingly expressive

regular expression matches does not match

.*spb.*
contains the trigraph spb

raspberry
crispbread

subspace
subspecies

a* | (a*ba*ba*ba*)*
multiple of three b's

bbb
aaa
bbbaababbaa

b
bb
baabbbaa

.*0....
fifth to last digit is 0

1000234
98701234

111111111
403982772

gcg(cgg|agg)*ctg
fragile X syndrome
indicator

gcgctg
gcgcggctg
gcgcggaggctg

gcgcgg
cggcggcggctg
gcgcaggctg

Regular Expressions

 Regular expressions (REs)
 A standard programmer's tool

 Built into many languages: Java, Perl, Unix, Python, …

 Additional convenience operations:

 e.g. [a-e]+ shorthand for (a|b|c|d|e)(a|b|c|d|e)*

 e.g. \s is shorthand for any whitespace character

operation regular expression matches does not
match

one or more
+

a(bc)+de abcde
abcbcde

ade
bcde

character class
[]

[A-Za-z][a-z]* lowercase
Capitalized

camelCase
4illegal

exactly k, between k and j
{k}, {k,j}

[0-9]{5}-[0-9]{4} 08540-1321
19072-5541

111111111
166-54-1111

negation
^

[^aeiou]{5,6} rhythm
synch

decade
rhythms

Pattern Matching Application

 PROSITE
 Huge database of protein families and domains

 Identify the C2H2-type zinc finger domain, how???

1. C

2. Between 2 and 4 amino acids

3. C

4. 3 more amino acids

5. One of the following amino acids: LIVMFYWCX

6. 8 more amino acids

7. H

8. Between 3 and 5 more amino acids

9. H

Use a regular expression!

C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H

Regular Expressions in Java

 Helps match and split up strings

 Built-in to Java String class methods

 Note: escape \ in regular expression with \\

String [] cols = line.split("\\s+");

Regular expression that matches 1 or
more whitespace characters.
NOTE the escaped backslash!

public class String

boolean matches(String re) // Does this String match the given re?

String replaceAll(String re, String str) // Replace all occurrences of re with str

String replaceFirst(String re, String str) // Replace first occurrence of re with str

String [] split(String re) // Split string around matches of re

Parsing Data into Columns

 Goal: Compute average of a line of numbers

 Problem: Numbers per line is unknown

avgnums.txt

10 20 30
40.0

50 60.12
70 80 90 100 110 120 130 140
1.2 2.3 3.4

% java AvgPerLine avgnums.txt
20.0
40.0
55.06
105.0
2.3000000000000003

AvgPerLine Implementation

public class AvgPerLine
{
 public static void main(String [] args)
 {
 Scanner scan = new Scanner(System.in);
 while (scan.hasNext())
 {
 String line = scan.nextLine();
 String [] cols = line.split("\\s+");
 if ((cols.length > 0) && (cols[0].length() > 0))
 {
 double total = 0.0;
 for (String col : cols)
 total += Double.parseDouble(col);
 System.out.println(total / cols.length);
 }
 }
 }
}

Read in entire line of
text

Split on whitespace

Regular Expression Example

 Goal: Display all words in a file ending -ing

% java GerundFinder mobydick.txt

having nothing driving regulating growing pausing bringing stepping knocking not

hing surprising leaning looking striving pacing Nothing loitering falling enchan

ting reaching overlapping receiving meaning going something something taking goi

ng being broiling thing putting lording making anything knowing paying paying be

ing paying being considering having whaling going whaling something "Whaling wha

ling being performing cajoling resulting discriminating overwhelming attending e

verlasting ignoring whaling Quitting learning reaching following whaling somethi

ng everything monopolizing having following shouldering comparing halting pausin

g tinkling stopping moving proceeding thing flying hearing sitting beating weepi

ng wailing teeth-gnashing backing Moving creaking looking swinging painting repr

esenting swinging leaning howling toasting chattering shaking everlasting making

 holding being blubbering going Entering straggling reminding painting understan

ding throwing something hovering floating painting something weltering purposing

 spring impaling glittering resembling sweeping death-harvesting horrifying whal

ing sojourning Crossing howling Projecting dark-looking goggling cheating enteri

ng examining telling tapping sharing ruminating adorning stooping working trying

 adjoining Nothing winding scalding looking nothing knowing evening rioting Star

ting offing tramping capering making sleeping making dazzling seeming sleeping s

leeping being getting going feeling saying dusting planing grinning spraining pl

aning gathering throwing yoking leaving standing looking seeing spending cherish

GerundFinder

public class GerundFinder
{
 public static void main(String [] args)
 {
 Scanner scan = new Scanner(System.in);
 while scan.hasNext())
 {
 String word = scan.next();
 if (word.matches(".+ing"))
 System.out.print(word + " ");
 }
 System.out.println();
 }
}

1 or more characters
followed by "ing"

Read in next whitespace
separated chunk of text

Regular Expression Quick Reference
Construct Matches

. Any character

\d A digit: 0-9

\s A whitespace character

\w A word character: a-z A-Z 0-9 _

\D A non-digit (anything except 0-9)

\S A non-whitespace character

\W A non-word character

Classes Matches

[abc] Character a, b or c

[^abc] Any character except a, b, or
c

[a-z] Characters a, b, c, …, z

[A-Z] Characters A, B, C, …, Z

[a-zA-Z] Characters a, A, b, B, …, z, Z

Quantifier Matches

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

{n} Exactly n occurrences

{n,} At least n occurrences

{n,m} Between n and m
occurrences inclusive

Expression Example matches

... cat, sat, mat, …

c.. cat, cow, cut, …

[abc]at aat, bat, cat

[abc]+z az, bz, cz, aaz, abz, bcz, bbacz, …

[0-9]{5} 12345, 59701, 01234, …

\d\d\d\d 1980, 2005, 9999, …

Summary

 Regular expressions

 Convenient notation to detect if a string is in a set

 Built-in to many modern programming languages

 Usually easier than writing custom string parsing code

 Very powerful

 But still some things it can't do:

 e.g. Recognize all bit strings with equal number of 0's and 1's

 Well-supported in Java String class:

 Test if a String matches an RE

 Split a String based on an RE

 Find-and-replace based on an RE

